	Ar	n Ecological Assessment of the United States Mid-Atlantic Region
Figure No.	Page	Title
1.1	2	The Mid-Atlantic region
1.2	4	Community link to landscape
1.3	5	Measuring spatial patterns as an indicator of stream conditions
1.4	6	Conceptual model of habitat fragmentation
1.5	7	Landscape components of a high–quality environment
1.6a	8	Human modifications that reduce sustainability of natural resources
1.6b	9	More human modifications that reduce sustainability of natural resources
1.7	11	Illustration of differential light reflectance properties over the Chesapeake Bay
1.8	12	Techniques used as a measurement of landscape indicators
1.9	13	Example of the spatial filtering process
1.10	14	Summarizing landscape indicator values
1.11	15	How to read the maps and charts in this atlas
2.1	17	National land cover map
2.2a	18	National map of roads
2.2b	19	National map of rivers and watershed boundaries
2.3a	20	Land Use Patterns (agriculture and urban)
2.3b	21	Land Use Patterns (agriculture)
2.4	22	Number of nuatural land-cover types per 100 square kilometers of watershed area
2.5a	24	Percentage of watershed that is forested
2.5b	25	Average forest patch size and index of forest connectivity
2.6a	26	Stream length dominated by forest cover
2.6b	27	Stream length dominated by urban and agriculture cover
2.7	28	Number of road-stream crossings per 100 kilometers of streams
3.1	31	Shaded relief map of the mid–Atlantic region
3.2	33	Streams and water bodies in the mid–Atlantic region
3.3	34	Watershed boundaries within the mid–Atlantic region
3.4	36	Land cover in the mid–Atlantic region, ca. 1990
		Proportion of forest, argriculture, urban, water and other land cover types for watersheds
3.5	37	in the mid-atlantic region
3.6	38	Population density in the mid–Atlantic region
3.7	40	Population change (1970 to 1990) in the mid–Atlantic region
3.8	41	Surface map of the human use index (U-index) in the mid-Atlantic region
3.9	42	The human use index in the mid–Atlantic region
3.10	43	Surface map of road density in the mid–Atlantic region
3.11	44	Road density in the mid–Atlantic region
		Surface maps of estimated average annual wet deposition of (a) nitrate and (b) sulfate in
3.12a/b	45	the mid-Atlantic region.
3.13/3.14	46	Average annual wet deposition of nitrate and sulfate in the mid–Atlantic region
3.15	47	Average annual value of the W126 ozone index in the mid–Atlantic region
3.16	48	Landscape units in the mid–Atlantic region
3.17	50	Proportion of total streamlength with adjacent forest land cover
3.18	51	Proportion of total streamlength with adjacent agriculture land cover
3.19	52	Proportion of total stream length that has roads within 30 meters
3.20	53	Locations of large water impoundments in the mid–Atlantic region
3.21	54	Number of impoundments per 1,000 kilometers of stream in the mid-Altantic region
3.22	55	Proportion of watersheds with crop land cover on slopes greater than 3%
3.23	56	Proportion of watersheds with agriculture land cover on slopes greater than 3%
3.24	57	Potential nitrogen and phosphorous loadings to streams
3.25	58	Proportion of watersheds with potential soil loss greater than one ton/acre/year
3.26	59	Proportion of watershed that is forested in the mid–Atlantic region
3.27	61	Forest fragmentation index in the mid–Atlantic region
		Surface map of forest edge habitat and proportion of watersheds with suitable forest
3.28a/3.29a	62	edge habitat

	Ar	n Ecological Assessment of the United States Mid-Atlantic Region
Figure No.	Page	Title
		Surface maps of forest edge habitat and proportion of watersheds with suitable forest
3.28bc/3.29b	63	edge habitat
		Surface map of interior forest habitat and proportion of watersheds with suitable interior
3.30a/3.31a	64	forest habitat
		Surface maps of interior forest habitat and proportion of watersheds with suitable interior
3.30bc/3.31t	65	forest habitat
3.32	66	Proportion of watershed with suitable interior forest habitat at three scales
		Proportion of the watershed in the largest forest patch in relation to the proportion in
3.33	67	non-forest land cover
		Departure of the largest forest patch from the maximum possible for a given amount of
3.34	68	anthropogenic cover in the mid-Atlantic region.
3.35	69	Vegetation change east of Richmond, VA.
3.36abc	70-71	NDVI changes in three watersheds in the mid–Atlantic region
3.37/3.38	72	Decreases and increases in the NDVI from 1975 to 1990
3.39	73	Total change in the NDVI from 1975 to 1990
		Differences in observed and expected decreases in the NDVI from 1975 to 1990 in
3.40	74	first–order stream regions
		Differences in observed and expected increases in the NDVI from 1975 to 1990 in
3.41/3.42	75	first–order stream regions in the mid–Atlantic region
		Differences in observed and expected total change in the NDVI from 1975 to 1990 in
		first–order stream regions in the mid–Atlantic region
		Surface map of decreases in the NDVI from 1975 to 1990 on slopes greater than three
3.43/3.44	76	percent
		Proportion of watershed with decreases in the NDVI from 1975 to 1990 on slopes greater
		than three percent
4.1	82	Ranking of watersheds
4.2	83	Results of the cluster analysis and ranking of watersheds baed on indicator values